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Abstract

Xu and von Davier (2006) demonstrated the feasibility of using the general diagnostic model

(GDM) to analyze National Assessment of Educational Progress (NAEP) proficiency data. Their

work showed that the GDM analysis not only led to conclusions for gender and race groups

similar to those published in the NAEP Report Card, but also allowed flexibility in estimating

multidimensional skills simultaneously. However, Xu and von Davier noticed that estimating the

latent skill distributions will be much more challenging with this model when there is a large

number of subgroups to estimate. To make the GDM more applicable to NAEP data analysis,

which requires a fairly large subgroups analysis, this study developed a log-linear model to reduce

the number of parameters in the latent skill distribution without sacrificing the accuracy of

inferences. This paper describes such a model and applies the model in the analysis of NAEP

reading assessments for 2003 and 2005. The comparisons between using this model and the

unstructured model were made through the use of various results, such as the differences between

item parameter estimates and the differences between estimated latent class distributions. The

results in general show that using the log-linear model is efficient.

Key words: General diagnostic model (GDM), group characteristics, item responses, large survey

data, log-linear modeling
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1. Introduction

Located latent class (LLC) models are alternatives to item response theory (IRT) models

(Lord & Novick, 1968) in analyzing item responses. For LLC models, the latent abilities are

conceptualized as an ordered or unordered set of a finite number of fixed classes (Haberman,

1979; Lazarsfeld & Henry, 1968). In IRT, the latent abilities are assumed to be continuous in

a countable set. Though these two types of modeling make different assumptions about the

latent abilities, they have something in common. For example, the marginal maximum likelihood

estimates (MMLEs) of the item parameters will be identical for these two modeling frameworks

when the location and number of the ordered latent classes are chosen to reflect a sufficient

number of appropriately spaced points on the latent ability distribution (Formann, 1992; Heinen,

1996; von Davier & Yamamoto, 2004). Some arguments have been advanced that LLC models

are more efficient than IRT models. For example, Laird (1978) showed that the estimated latent

distribution obtained from MMLEs is a discrete distribution even if the true distribution is

continuous. In addition, Follmann (1988) and Haberman (2005) showed that, at most, (T + 2)/2

discrete latent classes can be identified in a test consisting of total T items when using the Rasch

model. The number of identifiable latent classes might be even smaller in other models, such as

the two-parameter logistic (2PL) or the three-parameter logistic (3PL) models (Haberman, 2005).

These arguments imply that LLC models are useful and meaningful alternatives to IRT models.

In addition, LLC models may be more efficient than IRT models in cases where small numbers

of items are administered, and/or in situations where items measuring multidimensional latent

abilities are administered.

An immediate application of LLC models is cognitive diagnosis where the inferences about

individuals are made in the form of multiple discrete latent abilities. Examples of such approaches

include the general diagnostic model (GDM; von Davier, 2005), the fusion model (FM; Hartz,

2002), and the rule-space methodology (RSM; Tasuoka, 1995), as well as latent response models

and multiple-classification latent class models (Junker & Sijtsma, 2001; Maris, 1995, 1999).

However, one potential problem exists for such models if no constraints are imposed on the

structure of the latent skill space. It is not difficult to observe that the skill space composed by

the combination of the discrete latent skills can be easily expanded as the number of skills as well

as the levels for each skill increase. For example, suppose a verbal test is designed to measure

10 skills. If no constraints are put into the structure of the latent skill space, this amounts to
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estimating 210 − 1 (i.e., 1,023) probabilities of the latent ability profiles. The same number of

10 dimensions with three levels each amounts to 310 − 1 (i.e., 59,048) parameters to estimate.

The vast majority of data sets will be sparse relative to this large number of latent classes. This

observation was motivation use a parametric form to reflect main features of the latent skill space.

It seems natural to use log-linear modeling for the latent class distribution since the latent

variables in LLC models are discrete. This study uses real data examples to demonstrate the

log-linear model for the latent class distribution will not affect efficiency in estimating item

parameters and marginal skill distributions. This paper is organized as follows: Section 2

introduces the log-linear model, the GDM, their related notation, and their likelihood. Section 3

describes the EM algorithm used to estimate the model parameters. The real data analyses are

explored in section 4, followed by a brief discussion in section 5.

2. Structured General Diagnostic Model

The GDM coupled with a log-linear model for the latent skill space is used in this study. This

model is referred to as the structured GDM. The sections below introduce the necessary notations

and guiding assumptions for the structured GDM. In contrast to approaches that assume a lower

dimensional structure underlies the multidimensional skill structure (de la Torre & Douglas, 2004),

the proposed model smooths the latent-class distribution by applying a log-linear model. The

proposed model does not reduce dimensionality and thus stays with the number of dimensions

assumed when the test was designed. However, lower dimensional models could be specified

directly in the GDM framework if one wanted to consider them. Then, the fit of two or more

alternative models, assuming lower and higher dimensional structures, can be compared directly.

2.1 Notation- and Model-Based Likelihood

Let N denote the total number of examinees in the sample, and M the total number of items.

Let h be the index for the latent classes composed of combinations of latent skills and H the total

number of latent classes. Let Sj be the number of response categories for item j, and s(ij) be the

score of person i in responding to item j.

Suppose xi = (xi1, . . . , xiM ) is the response vector of examinee i. Let P (xi|h) denote the

probability of the response pattern given the latent class h, and P (h) the probability of the latent

class h, for h = 1, . . . ,H.
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Then, the marginal likelihood is given by:

L =
N∏

i=1

[
H∑

h=1

(P (xi|h)P (h))].

If each person’s latent class [i.e., person i is from class h, denoted as h(i)] is known, the likelihood

can be written as

L =
N∏

i=1

H∏
h=1

[P (xi|h)P (h)]I(h(i)=h)

=
N∏

i=1

H∏
h=1

[
M∏

j=1

P (xij |h)P (h)]I(h(i)=h)

=
N∏

i=1

H∏
h=1

[P (h)
M∏

j=1

Sj∏
s=1

P (xij = s|h)I(s(ij)=s)]I(h(i)=h)

=
N∏

i=1

H∏
h=1

P (h)I(h(i)=h)
N∏

i=1

H∏
h=1

M∏
j=1

Sj∏
s=1

P (xij = s|h)I(s(ij)=s)I(h(i)=h)

=
H∏

h=1

P (h)n(h)
H∏

h=1

M∏
j=1

Sj∏
s=1

P (xj = s|h)n(j,h,s). (1)

Note that n(h) stands for the numbers of students who are in latent class h, and n(j, h, s)

represents the number of students who are in latent class h, and score in category s on item j.

The log-likelihood follows by taking the log of equation (1):

l = log L =
H∑

h=1

n(h) log P (h) +
H∑

h=1

M∑
j=1

Sj∑
s=1

n(j, h, s) log P (xj = s|h). (2)

Notice that the first term in this log-likelihood contains only the information about population

parameters, while the second term contains information about item parameters.

The parametric models used in this study for P (h) and P (xj = s|h) are introduced in the

next two sections.

2.2 A Log-Linear Model for Multidimensional Attribute Spaces

Suppose that a total number of K attributes are measured by one test. Then the latent classes

are generated by all possible combinations of these K attributes. In connection with previous

notation, h is an index of latent classes realized by (θ1, θ2, . . . , θK). Here, θk, for k = 1, . . . ,K, is

a discrete random variable with m real valued levels for each skill. Let n(θ1, . . . , θK) denote the
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joint count of these K discrete random variables. A multidimensional log-linear model used in

describing the latent skill space is given by:

log n(θ1, . . . , θK) = β(0) +
K∑

k=1

max(l)∑
l=1

β(1)klθ
l
k +

K−1∑
c=1

K∑
k=c+1

β(2)kcθcθk, (3)

where l is the index for the number of moments. The maximum value of l could be 1, 2 and 3,

depending on the levels specified for the latent skills. For example, if a skill only has two levels,

max(l) = 1. If a skill has three levels, max(l) = 2. Otherwise, max(l) = 3. Including up to a third

of latent variables enables one to capture skewness of the latent class distribution.

If n(θ1, θ2, . . . , θK) were observable, either the Newton-Ralphson (N-R) method or the

iterative weighted least square (IWLS) method could be used to estimate the parameters β(0), β(1),

and β(2). Details on these two methods can be found in the book by Agresti (2002). These two

methods will lead to the same estimates of the parameters as well as the same estimation errors

(Birch, 1963; Lang, 1996; Palmgren, 1981). However, since n(θ1, θ2, . . . , θK) are not observable,

the parameters have to be calculated iteratively in an algorithm suitable for incomplete data, for

example the EM algorithm.

2.3 Brief Introduction to the GDM

The GDM (von Davier, 2005) has been developed and applied in specific analyses of several

large scale assessment data sets, such as the National Assessment of Educational Progress (NAEP)

data profile scoring (Xu & von Davier, 2006) and TOEFL R© iBT data analysis (von Davier, 2005).

A compensatory GDM suitable for dichotomous and polytomous ordinal items is given by:

log P (xj = s|θ1, θ2, . . . , θK) = αj(βjs, γjk) + βjs +
K∑
i

sγjkθkqjk, (4)

where αj is a normalizing term. This model will be revisited in the section on estimation.

3. Estimation: EM Algorithm

An EM algorithm suitable for estimating the parameters in the structured GDM is given

below. In the E step, preliminary parameter estimates are used to calculate the expected counts,

which serve as the basis for the required statistics in the M step. Then the M step iteratively

improves on parameter estimates for the structured GDM using standard maximization methods.

The E step and the M step are executed alternatively until some convergence criterion is reached.
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3.1 E Step

With initial values of both item parameters and population parameters, the posterior

distribution P (h|xi) = P (θ1(h), θ2(h), . . . , θK(h)|xi) can be easily calculated according to Bayes’

theorem. The two required types of expected counts are then obtained through the following two

equations:

n̂(h) = n(θ1(h), θ2(h), . . . , θK(h)) =
N∑

i=1

P (θ1(h), θ2(h), . . . , θK(h)|xi) and

n̂(j, h, s) =
N∑

i=1

I(xij = s)P (θ1(h), θ2(h), . . . , θK(h)|xi).

3.2 M Step

Two sets of parameters will be updated in the M step. Therefore, two stages are designed by

divide-and-conquer technique.

3.3 M Step, Stage 1

Update the parameters in the log-linear model.

Let Z be a design matrix that has the following form when there are more than three levels

for each skill:

ZH×G =
(

1 A B
)

,

where 1 is a vector with all elements being 1. A is a matrix of dimension H × 3K, with elements

being the main effects of the K discrete random variables:

A =



θ1(1) . . . θK(1) θ2
1(1) . . . θ2

K(1) θ3
1(1) . . . θ3

K(1)

θ1(2) . . . θK(2) θ2
1(2) . . . θ2

K(2) θ3
1(2) . . . θ3

K(2)
...

...
...

...
...

...
...

...
...

θ1(H) . . . θK(H) θ2
1(H) . . . θ2

K(H) θ3
1(H) . . . θ3

K(H)


.

B is a matrix of dimension H × K(K−1)
2 , with elements being the first-order correlation of

these variables.

B =



θ1(1)θ2(1) . . . θ1(1)θK(1) θ2(1)θ3(1) . . . θK−1(1)θK(1)

θ1(2)θ2(2) . . . θ1(2)θK(2) θ2(2)θ3(2) . . . θK−1(2)θK(2)

...
...

...
...

θ1(H)θ2(H) . . . θ1(H)θK(H) θ2(H)θ3(H) . . . θK−1(H)θK(H)


.
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Therefore, the design matrix Z is an H × G matrix, with H being the total number of

attribute patterns and G equal to 1 +
∑K

k=1 Min(3, nlevel(k) − 1) + K(K−1)
2 when the levels for

each skill k are denoted by nlevel(k). In this design matrix, θk(h) represents the value of θk in the

attribute pattern h. For example, in an attribute pattern h = {1011}, θ2(h) = 0 and θ3(h) = 1.

Let β = (β(0), β(1), β(2)) be the vector of parameters that correspond to this design matrix.

The log-linear model in (3) can be written in terms of the design matrix and the population

parameter vector:

log n(θ1, . . . , θK) = Zβ.

The iterative weighted least square (IWLS) estimator of β is given by:

β̂
IWLS

= (ZTVZ)ZV log(n̂(h)),

where V = diag{n̂(h)} and n̂(h) is vector with elements n̂(h). To make this vector estimable,

three conditions have to be met: (a) K ≥ 1, (b) H ≥ 3, and (c) H > G. The estimation error

matrix of β̂
IWLS

is:

cov(β̂
IWLS

) = [ZT V Z]−1.

3.4 M Step, Stage 2

The second phase of the M step updates the parameters in the GDM in (4). This probability

function belongs to the exponential family, with parameters βjs and γjks, for s = 1, . . . , Sj and

k = 1, . . . ,K. For parameter βjs, the sufficient statistic is I(xj = s). For parameter γjk, the

sufficient statistic is sθkqjk. It then follows that:

∂l

∂βjs
=

H∑
h=1

n̂(j, h, s)(1− P (xj = s|θ1(h), θ2(h), . . . , θK(h)))

and

∂l2

∂β2
js

=
H∑

h=1

n̂(j, h, s)P (xj = s|θ1(h), θ2(h), . . . , θK(h))(1− P (xj = s|θ1(h), θ2(h), . . . , θK(h))).

The same logic is followed to calculate the first and second derivative of γjks:

∂l

∂γjk
=

H∑
h=1

S∑
s=1

n̂(j, h, s)θk(h)qjk[s− P (xj = s|θ1(h), θ2(h), . . . , θK(h))],
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and
∂l2

∂γ2
jk

=
H∑

h=1

S∑
s=1

n(j, h, s)θ2
k(h)q

2
jk[E(s2)− (E(s))2].

The N-R algorithm is then used to obtain updated estimates:

γ
(n+1)
jk = γ

(n)
jk − (

∂l2

∂γ2
jk

)−1 ∂l

∂γjk

and

β
(n+1)
js = β

(n)
js − (

∂l2

∂β2
js

)−1 ∂l

∂βjs
.

The EM algorithm is stopped when certain convergence criteria are met. The convergence

criteria used are typically based on the convergence of parameter estimates as well as the

log-likelihood. In the mdltm software (von Davier, 2005) used for the analyses presented here,

both criteria have to be met before the algorithm stops the maximization process.

4. NAEP Data Analysis

In this study, real data examples are used to demonstrate the performance of the structured

GDM, compared to the unstructured GDM. Recall the definition of the structured GDM in the

beginning of section 2. The difference between the structured and unstructured GDM lies in the

use of a log-linear model for the latent skill space, which is used in the structured GDM but

not in the unstructured GDM. This implies that the unstructured GDM has more skill space

parameters to estimate than the structured GDM. Given sufficient data, it is obvious that the

unstructured GDM will lead to a larger likelihood than the structured GDM because it uses more

parameters. However, if the log-linear model of the latent skill space captures the main features of

the distribution, the use of the structured GDM will not lose efficiency in estimating the latent

class distributions and the item parameters. In addition, the structured GDM might result in

better model fits in terms of improved information indices, since it is more parsimonious.

4.1 Analysis Plan

Two reading data sets from the NAEP were analyzed. One data set was from the Grade 4

assessment in 2003, the other one is from the Grade 8 assessment in 2005. Two subscales with 102

items were administered to 191,271 students in Grade 4 in 2003. Three subscales with 142 items

were administered to 159,449 students in Grade 8 in 2005. Each assessment included a certain

proportion of polytomous items. In the analysis, the subscales defined in the frameworks were
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taken as cognitive skills or attributes in the GDM framework (see Xu & von Davier, 2006, for a

discussion).

The NAEP data analysis is conducted under both the single-group and the multiple-group

assumptions. In a single-group analysis, only one latent skill distribution is assumed for the latent

skill space; while in a multiple-group analysis, possibly different skill distributions are assumed for

different subgroups represented by gender groups or racial groups.

4.2 Results: Comparing the Structured and the Unstructured GDM

The comparison between the structured and unstructured GDM is made in terms of the item

parameter estimates, model fit, and marginal skill distribution estimates.

Item parameter estimates. Figure 1 presents the boxplots of the difference in item parameter

estimates between the structured and unstructured GDM. Assumption 1 stands for the analysis

under the single-group assumption, while Assumption 2 represents the analysis under the

multiple-group model, using either gender or racial ethnicity as the grouping variable. The lighter

boxplots are the results for the NAEP Grade 4 reading data of 2003, while the darker boxplots are

the results for the Grade 8 reading data of 2005. It is observed that, no matter which assumption

is used and which data are used, the difference between the structured and unstructured GDM is

small in terms of the item parameter estimates.

Model fit. The number of parameters, the log-likelihood and the Akaike information criterion

(AIC; Akaike, 1974) index are shown in Tables 1 and 4. In particular, Tables 1 and 2 are the

results under the single-group assumption, while Tables 5 and 4 are under the multiple-group

assumption. Two types of comparisons can be made by examining these tables: the comparison

between the structured and the unstructured GDM, and the comparison between different models

(i.e., two-parameter logistic/general partial-credit model [2PL/GPCM], three-level GDM, and

four-level GDM). The three-level GDM stands for the case where each skill is assigned three

real-valued levels, while four real-valued levels are assigned to each skill in the four-level GDM.

First look at the difference between the structured and unstructured GDM. Tables 1–4 show

that these two models are similar to each other in terms of the log-likelihood and the AIC index.

The reduction of parameter space in the structured GDM did not pose any difficulties in fitting

the data.

Next, when the models are compared in the single-group assumption, it can be observed that
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Figure 1. The difference between the structured and unstructured GDM.

the four-level GDM gives the best fit under both the structured and unstructured GDM. Hence,

the four-level GDM is used in multiple-group analysis in this paper.

Marginal skill distribution estimates. This type of comparison can be demonstrated using

the results of the Grade 8 reading data analysis. The marginal skill distribution estimates are

shown in Table 5 for the four major ethnicity groups. The results provided here are based on the

analysis under the multiple-group model with ethnicity as the grouping variable. The models used

in the analysis include the four-level-three-skill structured and unstructured GDM. Compared to
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Table 1.
2003 Grade 4 Reading Data Analysis: Under Single-Group Assumption

Model # of # of
parameters parameters Log-likelihood Log-likelihood AIC AIC

in in in in in in
unstructured structured unstructured structured unstructured structured

GDM GDM GDM GDM GDM GDM
2PL/GPCM 261 235 -2,124,703.89 -2,124,959.79 4,249,930 4,250,390
3-level GDM 241 240 -2,127,534.21 -2,127,539.00 4,255,550 4,255,558
4-level GDM 246 240 -2,123,603.02 -2,123,709.38 4,247,698 4,247,899

Table 2.
2005 Grade 8 Reading Data Analysis: Under Single-Group Assumption

Model # of # of
parameters parameters Log-likelihood Log-likelihood AIC AIC

in in in in in in
unstructured structured unstructured structured unstructured structured

GDM GDM GDM GDM GDM GDM
2PL/GPCM 359 334 -1,867,520.94 -1,867,667.05 3,735,760 3,736,002
3-level GDM 357 342 -1,869,103.90 -1,869,119.49 3,738,922 3,738,923
4-level GDM 391 342 -1,866,312.36 -1,866,356.62 3,733,407 3,733,397

Table 3.
2003 Grade 4 Reading Data Analysis: Under Multiple-Group Assumption

Model # of # of
parameters parameters Log-likelihood Log-likelihood AIC AIC

in in in in in in
unstructured structured unstructured structured unstructured structured

GDM GDM GDM GDM GDM GDM
4-level GDM 260 247 -2,122,764.47 -2,122,875.36 4,246,049 4,246,245
with gender
4-level GDM 288 261 -2,112,494.57 -2,112,606.41 4,225,565 4,225,735

with race

using the unstructured GDM, using the structured GDM leads to similar estimates for marginal

probability, except for several cases highlighted in bold in Table 5. Even for these highlighted

cases, the difference of 0.01 between the structured and unstructured GDM is acceptable and

negligible.
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Table 4.
2005 Grade 8 Reading Data Analysis: Under Multiple-Group Assumption

Model # of # of
parameters parameters Log-likelihood Log-likelihood AIC AIC

in in in in in in
unstructured structured unstructured structured unstructured structured

GDM GDM GDM GDM GDM GDM
4-level GDM 452 353 -1,865,005.74 -1,865,062.97 3,730,915 3,730,832
with gender
4-level GDM 574 375 -1,858,682.43 -1,858,767.66 3,718,513 3,718,285

with race

Table 5.
2005 Grade 8 Reading Data Analysis: The Marginal Distribution Under

Multiple-Group Assumption

Unstructured GDM Structured GDM
Level Level Level Level Level Level Level Level

1 2 3 4 1 2 3 4
White Skill 1 0.06 0.19 0.38 0.37 0.06 0.19 0.38 0.37

Skill 2 0.02 0.11 0.38 0.49 0.02 0.11 0.38 0.49
Skill 3 0.01 0.09 0.38 0.52 0.01 0.09 0.38 0.52

Black Skill 1 0.19 0.39 0.31 0.11 0.19 0.39 0.32 0.10
Skill 2 0.05 0.29 0.48 0.17 0.05 0.29 0.48 0.17
Skill 3 0.03 0.26 0.52 0.19 0.03 0.26 0.52 0.19

Hispanic Skill 1 0.18 0.33 0.35 0.14 0.17 0.34 0.35 0.14
Skill 2 0.05 0.27 0.48 0.20 0.05 0.27 0.48 0.20
Skill 3 0.04 0.27 0.47 0.22 0.04 0.27 0.47 0.22

Asian- Skill 1 0.07 0.20 0.34 0.39 0.06 0.21 0.34 0.39
American Skill 2 0.02 0.12 0.34 0.52 0.02 0.12 0.34 0.52

Skill 3 0.01 0.10 0.34 0.54 0.01 0.10 0.34 0.54

4.3 Results: Comparing the Single-Group and Multiple-Group Assumptions

Given the results presented above, the efficiency of using the structured GDM to fit the

data has been demonstrated. That being the case, the comparisons between the single-group

and multiple-group assumptions were made using the structured GDM. Under the single-group

assumption, the marginal skill distribution of a subgroup was obtained through a summation of

the posterior distribution of each student in that subgroup. Under the multiple-group assumption,

the skill marginal distribution was estimated directly in the software program mdltm (von Davier,

2005). The comparisons between the single-group and multiple-group assumptions are presented

in terms of item parameter and marginal skill distribution estimates.
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Item parameter estimates. Figure 2 illustrates the difference in item parameter estimates

under the single-group and multiple-group assumptions. The lighter boxplots represent the

differences in analyzing the 2003 Grade 4 reading data under these two assumptions. The analysis

under the multiple-group assumption includes the gender-group analysis and the race-group

analysis labeled on the x-axis. The darker boxplots are the results from 2005 Grade 8 reading

data analysis. All analysis in this figure were conducted by using the structured GDM with four

levels specified for each skill. The group labeled gender on the x-axis represents the difference

in item parameter estimates obtained by using single-group assumption and the gender-group

analysis. Likewise, the group labeled race on the x-axis stands for the difference obtained by using

the single-group and the race-group assumptions. It can be observed that the analysis under the

gender-group assumption leads to item parameter estimates that are similar to those under the

single-group assumption. However, the difference is larger when comparing the item parameter

estimates from the single-group and the race-group assumptions.

Marginal skill distribution estimates. This section focuses on the comparison between the

single-group and the multiple-group assumptions in terms of the marginal skill distribution

estimates. This comparison is illustrated using the Grade 8 reading analysis. In particular,

Figure 3 compares the single-group analysis to the gender-group analysis, while Figure 4 shows

the differences between the single-group and the race-group analysis. Since Skills 2 and 3 have

patterns that are similar to the pattern found for Skill 1, only the analysis for Skill 1 is shown in

Figure 4 for illustration.

In each graph, the solid line stands for the results from the single-group analysis, while the

dashed line represents the results from either the gender-group analysis or the race-group analysis.

The differences are small when the single-group and gender-group analysis are compared, as

shown in Figure 3. However, Figure 4 tells us a different story. This figure plots the marginal

distribution estimates for four major racial groups: White, Black, Hispanic and Asian-American

students. For the White and Asian-American students, the marginal distribution estimates are

not affected by the choice of the single-group and race-group assumptions. However, a slight

difference can be noted for the Hispanic and Black students when different analysis assumptions

are chosen. Further investigation is needed to determine whether these differences are significant.
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Figure 2. The difference between single- and multiple-group assumptions.

5. Discussion

5.1 Structured Versus Unstructured GDM

The difference between the structured and the unstructured GDM lies in the structure

employed in describing the latent skill distribution. In the structured GDM, a log-linear model

was utilized to smooth the distribution of multivariate discrete latent random variables. The

purpose of utilizing such a model is to improve on estimation efficiency, in addition to reducing the

parameter space. The results in Figure 1 and Tables 1–4 provide the evidence that the log-linear
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Figure 3. Marginal skill distributions: The single-group and gender-group analysis of

the NAEP 2005 Grade 8 reading data.

approach is capable of modeling the skill space accurately. It should be noted, however, that

the log-linear models may break down when there are a fair amount of structural zero cells or

cells with zero counts. For a test with highly correlated subscales, the parameter estimates might

fluctuate slightly around the true value, so that the algorithm would appear not to converge.

Further research needs to be conducted along this line.

In fact, the log-linear modeling of the latent attribute space is not limited to the GDM
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Figure 4. Marginal skill distributions: The single-group and race-group analysis of

the NAEP 2005 Grade 8 reading data.

framework. This model can be used with other cognitive diagnosis models, as long as their latent

space is discrete.

5.2 Two Assumptions

Both single-group and multiple-group assumptions are used and compared in our analysis.

They are comparable to single-ability distribution versus multiple-group IRT models. Each has its
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advantages. The results shown in Tables 5 and 4 and Figures 3 and 4 are consistent. There is not

much gain using the multiple-group assumption over the single-group assumption when inferences

are made on male and female student populations. However, there is a slight difference between

these two assumptions when we estimate the skill distributions of racial groups.

The interaction between gender and racial groups was not considered in the analysis. Future

research will include study of such interaction effects. In addition, some major reporting subgroups

(such as school lunch, parent education, English language learner, etc.) are not included in this

analysis, since the skill space would be too large reliable estimation. New models need to be

developed in order to reasonably include these conditioning variables in the GDM framework.
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